. Proteins and Proteomics: A Laboratory ManualCSHL Press .
. . . . .
. .
. . .
. . .
.   Enroll for Updates
  Privacy Policy
  Purchase the book
. . .
. . .
. Proteins and Proteomics: A Laboratory Manual cover .
Buy the Book

Chapter 6: Amino– and Carboxy– terminal Sequence Analysis—References

Abderhalden E. and Brockmann H. 1930. The contribution determining the composition of proteins especially polypeptides (German). Biochem. Z. 225: 386–408.

Aebersold R. 1993. Internal amino acid sequence analysis of proteins after in situ protease digestion on nitrocellulose. In A practical guide to protein and peptide purification for microsequencing, 2nd edition (ed. P. Matsudaira), pp. 103–124. Academic Press, San Diego, California.

Aebersold R., Leavitt J., Hood L.E., and Kent S.B. 1987. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc. Natl. Acad. Sci. 84: 6970–6974.

Aebersold R., Teplow D.B., Hood L.E., and Kent S.B. 1986. Electroblotting onto activated glass: High efficiency preparation of proteins from analytical sodium dodecyl sulfate-polyacrylamide gels for direct sequence analysis. J. Biol. Chem. 261: 4229–4238.

Aitken A. 1999. Protein consensus sequence motifs. Mol. Biotechnol. 12: 241–253.

Aitken A. and Learmonth M. 1997. Analysis of sites of protein phosphorylation. Methods Mol. Biol. 64: 293–306.

Baker C.S., Crobett J.M., May A.J., Yacoub M.H., and Dunn M.J. 1992. A human myocardial two-dimensional electrophoresis database: Protein characterization by microsequencing and immunoblotting. Electrophoresis 13: 723–726.

Bauw G., De Loose M., Inze D., Van Montagu M., and Vandekerckhove J. 1987. Alterations in the phenotype of plant cells studied by NH2-terminal amino acid—Sequence analysis of proteins electroblotted from two-dimensional gel-separated total extracts. Proc. Natl. Acad. Sci. 84: 4806–4810.

Beisiegel U. 1986. Protein blotting. Electrophoresis 7: 1–18.

Bergman T. and Jörnval H. 1987. Electroblotting of individual polypeptides from SDS/polyacrylamide gels for direct sequence analysis. Eur. J. Biochem. 169: 9–12.

Bergman T., Cederlund E., and Jörnvall H. 2001. Chemical C-terminal protein sequence analysis: Improved sensitivity, length of degradation, proline passage, and combination with Edman degradation. Anal. Biochem. 290: 74–82.

Boyd V.L., Bozzini M., Guga P.J., DeFranco R.J., and Yuan P.-M. 1995. Activation of the carboxy terminus of a peptide for carboxy-terminal sequencing. J. Org. Chem. 60: 2581–2587.

Boyd V.L., Bozzini M., Zon G., Noble R.L., and Mattaliano R.J. 1992. Sequencing of peptides and proteins from the carboxy terminus. Anal. Biochem. 206: 344–352.

Brown J.L. 1979. A comparison of the turnover of alpha-N-acetylated and nonacetylated mouse L-cell proteins. J. Biol. Chem. 254: 1447–1449.

Brown J. and Roberts W. 1976. Evidence that approximately eighty percent of the soluble proteins from Ehrlich ascites cells are N-acetylated. J. Biol. Chem. 251: 1009–1014.

Chang J.Y. and Creaser E.H. 1976. A novel method for protein sequence analysis. Biochem. J. 157: 77–85.

Dainese P., Staudenmann W., Quadroni M., Korostensky C., Gonnet G., Kertesz M., and James P. 1997. Probing protein function using a combination of gene knockout and proteome analysis by mass spectrometry. Electrophoresis 18: 432–442.

Doolittle R.F. 1982. An anecdotal account of the history of peptide stepwise degradtion procedures. In Methods in protein sequence analysis (ed. M. Elzinga), pp. 1–24. Humana Press, Clifton, New Jersey.

Dubois T., Rommel C., Howell S., Steinhussen U., Soneji Y., Morrice N., Moelling K., and Aitken A. 1997. 14-3-3 is phosphorylated by casein kinase I on residue 233. Phosphorylation at this site in vivo regulates Raf/14-3-3 interaction. J. Biol. Chem. 272: 28882–28888.

Dunbar B. 1997. Protein sequencer maintenance and troubleshooting. Methods Mol. Biol. 64: 217–233.

Eckerskorn C. 1994. Blotting membranes as the interface between electrophoresis and protein chemistry. In Microcharacterization of proteins (ed. R. Kellner et al.), pp. 75–89. VCH, Weinheim, Germany.

Eckerskorn C. and Lottspeich F. 1989. Internal amino acid sequence analysis of proteins separated by gel electrophoresis after tryptic digestion in polyacrylamide matrix. Chromatographia 28: 92–94.

_______. 1993. Structural characterization of blotting membranes and the influence of membrane parameters for electroblotting and subsequent amino acid sequence analysis of proteins. Electrophoresis 14: 831–838.

Eckerskorn C., Jungblut P., Mewes W., Klose J., and Lottspeich F. 1988. Identification of mouse brain proteins after two-dimensional electrophoresis and electroblotting by microsequence analysis and amino acid composition. Electrophoresis 9: 830–838.

Eckerskorn C., Strupat K., Karas M., Hillenkamp F., and Lottspeich F. 1992. Mass spectrometric analysis of blotted proteins after gel electrophoretic separation by matrix-assisted laser desorption/ionization. Electrophoresis 13: 664–665.

Edman P. 1949. A method for the determination of the amino acid sequence in peptides. Arch. Biochem. 22: 475–476.

Edman P. and Begg G.S. 1967. A protein sequenator. Eur. J. Biochem. 1: 80–91.

Edman P. and Henschen A. 1975. Sequence determination. Mol. Biol. Biochem. Biophys. (2nd edition) 8: 232–279.

Erdjumen-Bromage H., Geromanos S., Chodera A., and Tempst P. 1993. Successful peptide sequencing with femtomole level PTH-analysis: A commentary. In Techniques in protein chemistry IV (ed. R.H. Angeletti), pp. 419–426. Academic Press, San Diego, California.

Farnsworth V. and Steinberg K. 1993. A generation of phenylthiocarbamyl or anilinothiazolinone amino acids from the postcleavage products of the Edman degradation. Anal. Biochem. 215: 200–210.

Geisow M.J. and Aitken A. 1989. Gas- or pulsed liquid-phase sequence analysis. In Protein sequencing: A practical approach (eds. J.B.C. Findlay and M.J. Geisow), pp. 85–98. IRL Press, Oxford, United Kingdom.

Gevaert K., Rider M., Puype M., Van Damme J., De Boeek K., and Vandekerekhove J. 1995. New Strategies in high sensitivity chacterization of proteins separated from 1-D or 2-D gels. In Methods in protein structure analysis (ed. M.Z. Atassi and E. Appella), pp. 15–25. Plenum Press, New York.

Gevaert K., Verschelde J.-L., Puype M., Van Damme J., Goethals M., De Boeck S., and Vandekerckhove J. 1996. Structural analysis and identification of gel-purified proteins, available in the femtomole range, using a novel computer program for peptide sequence assignment, by matrix-assisted laser desorption ionization-reflectron time-of-flight-mass spectrometry. Electrophoresis 17: 918–924.

Gheorghe M.T., Jörnvall H., and Bergman T. 1997. Optimized alcoholytic deacetylation of N-acetyl-blocked polypeptides for subsequent Edman degradation. Anal. Biochem. 254: 119–125.

Hewick R.M., Hunkapiller M.W., Hood L.E., and Dreyer W.J. 1981. A gas-liquid solid phase peptide and protein sequenator. J. Biol. Chem. 256: 7990–7997.

Hirano H., Komatsu S., and Tsunasawa S. 1997. On-membrane deblocking of proteins. Methods Mol. Biol. 64: 285–292.

Hirano H., Komatsu S., Kajiwara H., Takagi Y., and Tsunasawa S. 1993. Microsequence analysis of the amino-terminally blocked proteins immobilized on polyvinylidene difluoride membrane by Western blotting. Electrophoresis 4: 839–846.

Hirano H., Komatsu S., Takakura H., Sakiyama F., and Tsunasawa S. 1992. Deblocking and subsequent microsequence analysis of Nalpha-blocked proteins electroblotted onto PVDF membrane. J. Biochem. 111: 754–757.

Hunter T. 1987. A thousand and one protein kinases. Cell 50: 823–829.

Inglis A.S. 1991. Chemical procedures for C-terminal sequencing of peptides and proteins. Anal. Biochem. 195: 183–196.

Inglis A.S., Reid G.E., and Simpson R.J. 1995. Chemical techniques employed for the primary structural analysis of proteins and peptides. In Interface between chemistry and biochemistry (ed. P. Jollés and H. Jörnvall), pp. 141–171. Birkhäuser Verlag, Basel, Switzerland.

Jahnen W., Ward L.D., Reid G.E., Moritz R.L., and Simpson R.J. 1990. Internal amino acid sequencing of proteins by in situ cyanogen bromide cleavage in polyacrylamide gels. Biochem. Biophys. Res. Commun. 166: 139–145.

Ji H., Moritz R.L., Reid G.E., Ritter G., Catimel B., Nice E., Heath J.K., White S.J., Welt S., Old L.J., Burgess A.W., and Simpson R.J. 1997. Electrophoretic analysis of the novel antigen for the gastrointestinal-specific monoclonal antibody, A33. Electrophoresis 18: 614–621.

Ji H., Baldwin G.S., Burgess A.W., Moritz R.L., Ward L.D., and Simpson R.J. 1993. Epidermal growth factor induces serine phosphorylation of stathmin in a human colon carcinoma cell line (LIM 1215). J. Biol. Chem. 268: 13396–13405.

Jonsson A.P., Griffiths W.J., Bratt P., Johansson I., Strömberg N., Jörnvall H., and Bergman T. 2000. A novel Ser O-glucuronidation in acidic proline-rich proteins identified by tandem mass spectrometry. FEBS Lett. 475: 131–134.

Jungblut P., Eckerskorn C., Lottspeich F., and Klose J. 1990. Blotting efficiency investigated by using two-dimensional electrophoresis, hydrophobic membranes and proteins from different sources. Electrophoresis 11: 581–588.

Klapper D.G., Wilde C.E., and Capra J.D. 1978. Automated amino acid sequence of small peptides utilizing polybrene. Anal. Biochem. 85: 126–131.

Laursen R.A. 1971. Solid-phase Edman degradation—An automatic peptide sequencer. Eur. J. Biochem. 20: 89–102.

Levy A.L. 1954. A paper chromatographic method for the quantitative estimation of amino-acids. Nature 174: 126–127.

Matsudaira P. 1987. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene fluoride membranes. J. Biol. Chem. 262: 10035–10038.

Matsudaira P., ed. 1993. Introduction. In A practical guide to protein and peptide purification for microsequencing, 2nd edition, pp. 1–13. Academic Press, San Diego, California.

Moore S. and Stein W.H. 1951. Chromatography. Sci. Am. 521: 546.

Moos M., Nguyen N.Y., and Liu T.-Y. 1988. Reproducible high yield sequencing of proteins electrophoretically separated and transferred to an inert support. J. Biol. Chem. 263: 6005–6008.

Moritz R.L. and Simpson R.J. 1992. Application of capillary reversed-phase high-performance liquid chromatography to high-sensitivity protein sequence analysis. J. Chromatogr. 599: 119–130.

Moritz R.L., Eddes J., Ji H., Reid G.E., and Simpson R.J. 1994. High-speed chromatographic separation of proteins and peptides: Application to rapid peptide mapping of in-gel digested proteins. J. Protein Chem. 13: 486–487.

_______. 1995. Rapid separation of proteins and peptides using conventional silica-based supports: Identification of 2-D gel proteins following in-gel proteolysis. In Techniques in protein chemistry VI (ed. J.W. Crabb), pp. 417–425. Academic Press, Orlando, Florida.

Mozdzanowski J., Hembach P., and Speicher D.W. 1992. High yield electroblotting onto polyvinylidene difluoride membranes from polyacrylamide gels. Electrophoresis 13: 59–64.

Nakagawa S. and Fukuda T. 1989. Direct amino acid analysis of proteins electroblotted onto polyvinylidene fluoride membranes from sodium dodecyl sulfate-polyacrylamide gel. Anal. Biochem. 181: 75–78.

Narita K., Matsuo H., and Nakajima T. 1975. End group determination. Mol. Biol. Biochem. Biophys. (2nd edition) 8: 30–103.

Patterson S. 1994. From electrophoretically separated protein to identification: Strategies for sequence and mass analysis. Anal. Biochem. 221: 1–15.

Patterson S.C. and Aebersold R. 1995. Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis 16: 1791–1814.

Patterson S.D., Hess D., Yungwirth T., and Aebersold R. 1992. High-yield recovery of electroblotted proteins and cleavage fragments from a cationic polyvinylidene fluoride-based membrane. Anal. Biochem. 202: 193–203.

Pisano J.J. 1975. Analysis of amino acid phenylthiohydantoins by gas chromatography and high performance liquid chromatography. Mol. Biol. Biochem. Biophys. (2nd edition) 8: 280–297.

Ploug M., Jensen A.L., and Barkholt V. 1989. Determination of amino acid compositions and NH2-terminal sequences of peptides electroblotted onto PVDF membranes from tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis: Application to peptide mapping of human complement component C3. Anal. Biochem. 181: 33–39.

Renart J., Reiser J., and Stark G.R. 1979. Transfer of proteins from gels to diazobenzyloxymethyl paper and detection with antisera: A method for studying antibody specificity and antigen structure. Proc. Natl. Acad. Sci. 76: 3116–3120.

Sambrook J. and Russell D.W. 2001. Molecular cloning: A laboratory manual, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Sanchez J.C., Ravier F., Pasquali C., Frutiger S., Paquet N., Bjellquist B., Hochstrasser D.F., and Hughes G.J. 1992. Improving the detection of protein after transfer to polyvinylidene fluoride membranes. Electrophoresis 13: 715–717.

Sanger F. 1945. The free amino groups of insulin. Biochem. J. 39: 507–515.

Scott M.G., Crimmins D.L., McCourt D.W., Tarrand J.J., Eyerman M.C., and Nahm M.H. 1988. A simple in situ cyanogen bromide cleavage method to obtain internal amino acid sequence of proteins electroblotted to polyvinylidene fluoride membranes. Biochem. Biophys. Res. Commun. 155: 1353–1359.

Simpson R.J. and Nice E.C. 1984. In situ cyanogen bromide cleavage of amino-terminally blocked proteins in a gas-phase sequencer. Biochem. Int. 8: 787–791.

_______. 1989. Strategies for the purification of subnanomole amounts of protein and polypeptides for microsequence analysis. In The use of HPLC in receptor biochemistry (ed A.R. Kerlavage), pp. 201–244. A.R. Liss, New York.

Simpson R.J. and Reid G.E. 1997. Sequence analysis of gel-resolved protein. In Gel electrophoresis of proteins—A practical approach, 3rd edition (ed. B.D. Hames), pp. 255–263. Humana Press, Totawa, New Jersey.

Simpson R.J., Moritz R.L., Begg G.S., Rubira M.R., and Nice E.C. 1989. Micropreparative procedures for high sensitivity sequencing of peptides and proteins. Anal. Biochem. 177: 221–236.

Spector D.L., Goldman R.D., and Leinwand L.A. 1998. Cells: A laboratory manual, vol. 1: Culture and biochemical analysis of cells. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Stark G.R. 1968. Sequential degradation of peptides from their carboxyl termini with ammonium thiocyanate and acetic anhydride. Biochemistry 7: 1796–1807.

Strupat K., Karas M., Hillenkamp F., Eckerskorn C., and Lottspeich F. 1994. Matrix-assisted laser desorption/ionisation mass spectrometry of proteins electroblotted after polyacrylamide-gel electrophoresis. Anal. Chem. 66: 464–470.

Tarr G.E., Beecher J.F., Bell M., and McKean D.J. 1978. Polyquarternary amines prevent peptide loss from sequenators. Anal. Biochem. 84: 622–627.

Tempst P., Link A.J., Riviere L.R., Fleming M., and Elicone C. 1990. Internal sequence analysis of proteins separated on polyacrylamide gels at the submicrogram level: Improved methods, applications and gene cloning strategies. Electrophoresis 11: 537–553.

Thompson E.O.P. 1955. The insulin molecule. Sci. Am. 192: 36–41.

Totty N.F., Waterfield M.D., and Hsuan J.J. 1992. Accelerated high-sensitivity microsequencing of proteins and peptides using a miniature reaction cartridge. Protein Sci. 1: 1215–1224.

Tous G.I., Fausnaugh J.L., Akinyosoye O., Lackland H., Winter-Cash P., Vitorica F.J., and Stein S. 1989. Amino acid analysis on polyvinylidene difluoride membranes. Anal. Biochem. 179: 50–55.

Tovey E.R. and Baldo B.A. 1987. Comparison of semi-dry and conventional tank-buffer electrotransfer from polyacrylamide gels to nitrocellulose membranes. Electrophoresis 8: 384–387.

Tovey E.R., Ford S.A., and Baldo B.A. 1987. Protein blotting on nitrocellulose: Some important aspects of the resolution and detection of antigens in complex extracts. J. Biochem. Biophys. Methods 14: 1–17.

Towbin H., Staehelin T., and Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. 76: 4350–4354.

Vandekerckhove J., Bauw G., Puype M., Van Damme J., and Van Montagu M. 1985. Protein-blotting on Polybrene-coated glass-fiber sheets. A basis for acid hydrolysis and gas-phase sequencing of picomole quantities of protein previously separated on sodium dodecyl sulfate/polyacrylamide gel. Eur. J. Biochem. 152: 9–19.

Ward L.D., Reid G.E., Moritz R.L., and Simpson R.J. 1990. Strategies for internal amino acid sequence analysis of proteins separated by polyacrylamide gel electrophoresis. J. Chromatogr. 519: 199–216.

Wellner D., Panneerselvam C., and Horecker B.L. 1990. Sequencing of peptides and proteins with blocked N-terminal amino acids: N-acetylserine or N-acetylthreonine. Proc. Natl. Acad. Sci. 87: 1947–1949.

Wittmann-Liebold B., Graffunder H., and Kohls H. 1976. A device coupled to a modified sequenator for the automated conversion of anilinothiazolinones into PTH amino acids. Anal. Biochem. 75: 621–633.

Xu Q.-Y. and Shively J. 1988. Improved electroblotting of proteins onto membranes and derivatized glass-fiber sheets. Anal. Biochem. 170: 19–30.

Zimmerman C.L., Pisano J.J., and Appella E. 1973. Analysis of amino acid phenylthiohydantoins by high speed liquid chromatography. Biochem. Biophys. Res. Commun. 55: 1220–1224.

Further Reading

Kellner R., Lottspeich F., and Meyer H.E., eds. 1994. Microcharacterization of proteins. VCH, Weinheim, Germany.

Matsudaira P., ed. 1993. A practical guide to protein and peptide purification for microsequencing, 2nd edition, Academic Press, San Diego, California.


. .