Chapter 15: Monitoring Protein–Protein Interactions by Time-resolved FTIR Difference Spectroscopy—References
Ahmadian M.R., Stege P., Scheffzek K., and Wittinghofer A. 1997. Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat. Struct. Biol. 4: 686–689.
Allin C. and Gerwert K. 2001. Ras catalyzes GTP hydrolysis by shifting negative charges from gamma- to beta-phosphate as revealed by time-resolved FTIR difference spectroscopy. Biochemistry 40: 3037–3046.
Allin C., Ahmadian M.R., Wittinghofer A., and Gerwert K. 2001. Monitoring the GAP catalyzed H-Ras GTPase reaction at atomic resolution in real time. Proc. Natl. Acad. Sci. 98: 7754–7759.
Ataka K. and Heberle J. 2003. Electrochemically induced surface-enhanced infrared difference absorption (SEIDA) spectroscopy of a protein monolayer. J. Am. Chem. Soc. 125: 4986–4987.
Becker C.F.W., Hunter C.L., Seidel R., Kent S.B.H., Goody R.S., and Engelhard M. 2003. Total chemical synthesis of a functional interacting protein pair: The protooncogene H-Ras and the Ras-binding domain of its effector c-Raf1. Proc. Natl. Acad. Sci. 100: 5075–5080.
Bourne H.R. 1997. G proteins—The arginine finger strikes again. Nature 389: 673–674.
Cantor C.R. and Schimmel P.R. 1980. Biophysical chemistry: Part 1: The conformation of biological macromolecules. W.H. Freeman, San Francisco, California.
Cepus V., Scheidig A.J., Goody R.S., and Gerwert K. 1998a. Time-resolved FTIR studies of the GTPase reaction of H-ras p21 reveal a key role for the β-phosphate. Biochemistry 37: 10263–10271.
Cepus V., Ulbrich C., Allin C., Troullier A. and Gerwert K. 1998b. Fourier transform infrared photolysis studies of caged compounds. Methods Enzymol. 291: 223–245.
Corrie J.E.T. and Trentham D.R. 1993. Caged nucleotides and neurotransmitters. Bioorg. Photochem. 2: 243–305.
Du X., Black G.E., Lecchi P., Abramson F.P. and Sprang S.R. 2004. Kinetic isotope effects in Ras-catalyzed GTP hydrolysis: Evidence for a loose transition state. Proc. Natl. Acad. Sci. 101: 8858–8863.
Engelhard M., Gerwert K., Hess B. and Siebert F. 1985. Light-driven protonation changes of internal aspartic acids of bacteriorhodopsin: An investigation of static and time-resolved infrared difference spectroscopy using [4-13C]aspartic acid labeled purple membrane. Biochemistry 24: 400–407.
Fersht A. 1999. Enzymes: Structures and reaction mechanisms. W.H. Freeman, San Francisco, California.
Feynman R.P., Leighton R.B., and Sands M. 1989. The Feynman lectures on physics. Addison-Wesley, Redwood City, California.
Fischer W.B., Sonar S., Marti T., Khorana H.G., and Rothschild K.J. 1994. Detection of a water molecule in the active-site of bacteriorhodopsin: Hydrogen-bonding changes during the primary photoreaction. Biochemistry 33: 12757–12762.
Fringeli U.P., Baurecht D., Siam M., Reiter G., Schwarzott M., Burgi T., and Bruesch P. 2002. ATR spectroscopy of thin films. In Handbook of thin film materials (ed. H.S. Nalwa), vol. 2, pp. 191–229. Academic Press, San Diego, California.
Gerwert K. 1993. Molecular reaction mechanisms of proteins as monitored by time-resolved FTIR spectroscopy. Curr. Opin. Struct. Biol. 3: 769–773.
Gerwert K., Souvignier G., and Hess B. 1990. Simultaneous monitoring of light-induced changes in protein side-group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy. Proc. Natl. Acad. Sci. 87: 9774–9778.
Gerwert K., Hess B., Soppa J., and Oesterhelt D. 1989. Role of aspartate-96 in proton translocation by bacteriorhodopsin. Proc. Natl. Acad. Sci. 86: 4943–4947.
Granjon T., Vacheron M.-J., Vial C., and Buchet R. 2001. Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid induced β structures as monitored by red edge excitation shift, Laurdan fluorescence, and FTIR. Biochemistry 40: 6016–6026.
Harrick N.J. 1987. Nanosampling via internal reflection spectroscopy. Appl. Spectrosc. 41: 1–2.
Hessling B., Souvignier G., and Gerwert K. 1993. A model-independent approach to assigning bacteriorhodopsin's intramolecular reactions to photocycle intermediates. Biophys. J. 65: 1929–1941.
John J., Sohmen R., Feuerstein J., Linke R., Wittinghofer A., and Goody R. S. 1990. Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry 29: 6058–6065.
Kariakin A., Davydov D., Peterson J. A., and Jung C. 2002. A new approach to the study of protein–protein interaction by FTIR: Complex formation between cytochrome P450BM-3 heme domain and FMN reductase domain. Biochemistry 41: 13514–13525.
Kauffmann E., Darnton N. C., Austin R. H., Batt C., and Gerwert K. 2001. Lifetimes of intermediates in the β-sheet to α-helix transition of β-lactoglobulin by using a diffusional IR mixer. Proc. Natl. Acad. Sci. 98: 6646–6649.
Kolano C. 2003. Ph.D. thesis. Bochum, Ruhr-Universität.
Kötting C. and Gerwert K. 2004. Chemical physics. 307: 227–232.
Lee J.K., Kim Y.-G., Chi Y.S., Yun W.S., and Choi I.S. 2004. Grafting nitrilotriacetic groups onto carboxylic acid-terminated self-assembled monolayers on gold surfaces for immobilization of histidine-tagged proteins. J. Phys. Chem. B 108: 7665–7673.
Lugtenburg J., Mathies R.A., Griffin R.G., and Herzfeld J. 1988. Structure and function of rhodopsins from solid state NMR and resonance Raman spectroscopy of isotopic retinal derivatives. Trends Biochem. Sci. 13: 388–393.
Masuch R. and Moss D.A. 2003. Stopped flow apparatus for time-resolved Fourier transform infrared difference spectroscopy of biological macromolecules in 1H2O. Appl. Spectrosc. 57: 1407–1418.
McCray J.A. and Trentham D.R. 1989. Properties and uses of photoreactive caged compounds. Annu. Rev. Biophys. Biophys. Chem. 18: 239–270.
Oberg K.A., Ruysschaert J.-M., and Goormaghtigh E. 2003. Rationally selected basis proteins: A new approach to selecting proteins for spectroscopic secondary structure analysis. Protein Sci. 12: 2015–2031.
Osawa M. 2001. Surface-enhanced infrared absorption. Top. Appl. Phys. 81: 163–187.
Palmer R.A., Chao J.L., Dittmar R.M., Gregoriou V.G., and Plunkett S.E. 1993. Investigation of time-dependent phenomena by use of step-scan FT-IR. Appl. Spectrosc. 47: 1297–1310.
Palmer R.A., Manning C.J., Chao J.L., Noda I., Dowrey A.E., and Marcott C. 1991. Application of step-scan interferometry to two-dimensional Fourier transform infrared (2D FT-IR) correlation spectroscopy. Appl. Spectrosc. 45: 12–17.
Park C.-H. and Givens R.S. 1997. New photoactivated protecting groups. 6. p-Hydroxyphenacyl: A phototrigger for chemical and biochemical probes. J. Am. Chem. Soc. 119: 2453–2463.
Pelliccioli A.P. and Wirz J. 2002. Photoremovable protecting groups: Reaction mechanisms and applications. Photochem. Photobiol. Sci. 1: 441–458.
Rammelsberg R., Hessling B., Chorongiewski H., and Gerwert K. 1997. Molecular reaction mechanisms of proteins monitored by nanosecond step-scan FT-IR difference spectroscopy. Appl. Spectrosc. 51: 558–562.
Rammelsberg R., Huhn G., Lubben M., and Gerwert K. 1998. Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network. Biochemistry 37: 5001–5009.
Remy A. and Gerwert K. 2003. Coupling of light-induced electron transfer to proton uptake in photosynthesis. Nat. Struct. Biol. 10: 637–644.
Rensland H., John J., Linke R., Simon I., Schlichting I., Wittinghofer A., and Goody R.S. 1995. Substrate and product structural requirements for binding of nucleotides to H-ras p21: The mechanism of discrimination between guanosine and adenosine nucleotides. Biochemistry 34: 593–599.
Rigler P., Ulrich W.-P., Hoffmann P., Mayer M., and Vogel H. 2003. Reversible immobilization of peptides: Surface modification and in situ detection by attenuated total reflection FTIR spectroscopy. ChemPhysChem 4: 268–275.
Ruckebusch C., Duponchel L., Sombret B., Huvenne J.P., and Saurina J. 2003. Time-resolved step-scan FT-IR spectroscopy: Focus on multivariate curve resolution. J. Chem. Inf. Comput. Sci. 43: 1966–1973.
Scheffzek K., Ahmadian M.R., Kabsch W., Wiesmuller L., Lautwein A., Schmitz F., and Wittinghofer A. 1997. The Ras-RasGAP complex: Structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277: 333–338.
Souvignier G. and Gerwert K. 1992. Proton uptake mechanism of bacteriorhodopsin as determined by time-resolved stroboscopic-FTIR-spectroscopy. Biophys. J. 63: 1393–1405.
Steinfeld J.I., Francisco J.S., and Hase W.L. 1999. Chemical kinetics and dynamics, 2nd edition. Prentice Hall, Upper Saddle River, New Jersey.
Stryer L. 1996. Biochemistry 4th revised edition. W.H. Freeman, New York.
Sudo Y., Furutani Y., Shimono K., Kamo N., and Kandori H. 2003. Hydrogen bonding alteration of Thr-204 in the complex between pharaonis phoborhodopsin and its transducer protein. Biochemistry 42: 14166–14172.
Tatulian S.A. 2003. Attenuated total reflection Fourier transform infrared spectroscopy: A method of choice for studying membrane proteins and lipids. Biochemistry 42: 11898–11907.
Tatulian S.A., Chen B., Li J., Negash S., Middaugh C.R., Bigelow D.J., and Squier T.C. 2002. The inhibitory action of phospholamban involves stabilization of α-helices within the Ca-ATPase. Biochemistry 41: 741–751.
Tucker J., Sczakiel G., Feuerstein J., John J., Goody R.S., and Wittinghofer A. 1986. Expression of p21 proteins in Escherichia coli and stereochemistry of the nucleotide-binding site. EMBO J. 5: 1351–1358.
Uhmann W., Becker A., Taran C., and Siebert F. 1991. Time-resolved FT-IR absorption spectroscopy using a step-scan interferometer. Appl. Spectrosc. 45: 390–397.
Walker J., Reid G.P., Gordon P., McCray J.A., and Trentham D.R. 1988. Photolabile 1-(2-nitrophenyl)ethyl phosphate esters of adenine nucleotide analogs. Synthesis and mechanism of photolysis. J. Am. Chem. Soc. 110: 7170–7177.
Weidlich O. and Siebert F. 1993. Time-resolved step-scan FT-IR investigations of the transition from KL to L in the bacteriorhodopsin photocycle: Identification of chromophore twists by assigning hydrogen-out-of-plane (HOOP) bending vibrations. Appl. Spectrosc. 47: 1394–1400.
Wittinghofer A. and Pai E.F. 1991. The structure of Ras protein: A model for a universal molecular switch. Trends Biochem. Sci. 16: 382–387.
<<< Chapter 14 References
Chapter 16 References >>>
|