Chapter 29: Screening Kinase Phosphorylation Motifs Using Peptide Libraries—References
Cohen P. and Goedert M. 1998. Engineering protein kinases with distinct nucleotide specificities and inhibitor sensitivities by mutation of a single amino acid. Chem. Biol. 5: R161–164.
Ficarro S.B., McCleland M.L., Stukenberg P.T., Burke D.J., Ross M.M., Shabanowitz J., Hunt D.F., and White F.M. 2002. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20: 301–305.
Holmes L.D. and Schiller M.R. 1997. Immobilized iron(III) metal affinity chromatography for the separation of phosphorylated macromolecules: Ligands and applications. J. Liq. Chromatogr. Relat. Technol. 20: 123–142.
Mann M., Ong S.E., Gronborg M., Steen H., Jensen O.N., and Pandey A. 2002. Analysis of protein phosphorylation using mass spectrometry: Deciphering the phosphoproteome. Trends Biotechnol. 20: 261–268.
Manning B.D. and Cantley L.C. 2002. Hitting the target: Emerging technologies in the search for kinase substrates. Sci. STKE 2002: PE49.
Manning G., Whyte D.B., Martinez R., Hunter T., and Sudarsanam S. 2002. The protein kinase complement of the human genome. Science 298: 1912–1934.
McLachlin D.T. and Chait B.T. 2001. Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol. 5: 591–602.
Muszynska G., Andersson L., and Porath J. 1986. Selective adsorption of phosphoproteins on gel-immobilized ferric chelate. Biochemistry 25: 6850–6853.
Neville D.C., Rozanas C.R., Price E.M., Gruis D.B., Verkman A.S., and Townsend R.R. 1997. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci. 6: 2436–2445.
Nishikawa K., Toker A., Johannes F.J., Songyang Z., and Cantley L.C. 1997. Determination of the specific substrate sequence motifs of protein kinase C isozymes. J. Biol. Chem. 272: 952–960.
Obata T., Yaffe M.B., Leparc G.G., Piro E.T., Maegawa H., Kashiwagi A., Kikkawa R., and Cantley L.C. 2000. Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J. Biol. Chem. 275: 36108–36115.
Obenauer J.C., Cantley L.C., and Yaffe M.B. 2003. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31: 3635–3641.
Peters E.C., Brock A., and Ficarro S.B. 2004. Exploring the phosphoproteome with mass spectrometry. Mini Rev. Med. Chem. 4: 313–324.
Posewitz M.C. and Tempst P. 1999. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem. 71: 2883–2892.
Songyang Z. and Cantley L.C. 1998. The use of peptide library for the determination of kinase peptide substrates. Methods Mol. Biol. 87: 87–98.
Songyang Z., Blechner S., Hoagland N., Hoekstra M.F., Piwnica-Worms H., and Cantley L.C. 1994. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 4: 973–982.
Yaffe M.B., Leparc G.G., Lai J., Obata T., Volinia S., and Cantley L.C. 2001. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol. 19: 348–353.
Zhang Z., Schaffer A.A., Miller W., Madden T.L., Lipman D.J., Koonin E.V., and Altschul S.F. 1998. Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res. 26: 3986–3990.
<<< Chapter 28 References
Chapter 30 References >>>
|