Chapter 46: Exploiting Protein–Protein Interactions to Design an Activator of p53—References
Arkin M.R. and Wells J.A. 2004. Small-molecule inhibitors of protein–protein interactions: Progressing towards the dream. Nat. Rev. Drug Discov. 3: 301–317.
Arkin M.R., Randal M., DeLano W.L., Hyde J., Luong T.N., Oslob J.D., Raphael D.R., Taylor L., Wang J., McDowell R.S., et al. 2003. Binding of small molecules to an adaptive protein–protein interface. Proc. Natl. Acad. Sci. 100: 1603–1608.
Asada S., Choi Y., and Uesugi M. 2003. A gene-expression inhibitor that targets an α-helix-mediated protein interaction. J. Am. Chem. Soc. 125: 4992–4993.
Ashcroft M. and Vousden K.H. 1999. Regulation of p53 stability. Oncogene 18: 7637–7643.
Berg T. 2003. Modulation of protein–protein interactions with small organic molecules. Angew. Chem. Int. Ed. Engl. 42: 2462–2481.
Bohacek R.S., Dalgarno D.C., Hatada M., Jacobsen V.A., Lynch B.A., Macek K.J., Merry T., Metcalf C.A., III, Narula S.S., Sawyer T.K., Shakespeare W.C., Violette S.M., and Weigele M. 2001. X-ray structure of citrate bound to Src SH2 leads to a high-affinity, bone-targeted Src SH2 inhibitor. J. Med. Chem. 44: 660–663.
Braisted A.C., Oslob J.D., Delano W.L., Hyde J., McDowell R.S., Waal N., Yu C., Arkin M.R., and Raimundo B.C. 2003. Discovery of a potent small molecule IL-2 inhibitor through fragment assembly. J. Am. Chem. Soc. 125: 3714–3715.
Carter P.H., Scherle P.A., Muckelbauer J.K., Voss M.E., Liu R.Q., Thompson L.A., Tebben A.J., Solomon K.A., Lo Y.C., Li Z., et al. 2001. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-alpha. Proc. Natl. Acad. Sci. 98: 11879–11884.
Chen J., Marechal V., and Levine A.J. 1993. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13: 4107–4114.
Chen L., Tilley J., Trilles R.V., Yun W., Fry D., Cook C., Rowan K., Schwinge V., and Campbell R. 2002. N-acyl-L-phenylalanine derivative as potent VLA4 antagonist mimicking the cyclic peptide VCAM-VLA4 inhibitor. Bioorg. Med. Chem. Lett. 12: 137–140.
Chene P. 2003. Inhibiting the p53-MDM2 interaction: An important target for cancer therapy. Nat. Rev. Cancer 3: 102–109.
Clackson T. and Wells J.A. 1995. A hot spot of binding energy in a hormone-receptor interface. Science 267: 383–386.
Emerson S.D., Palermo R., Liu C.M., Tilley J.W., Chen L., Danho W., Madison V.S., Greeley, D.N., Ju G., and Fry D.C. 2003. NMR characterization of interleukin-2 in complexes with the IL-2Rα receptor component, and with low molecular weight compounds that inhibit the IL-2/IL-Rα interaction. Protein Sci. 12: 811–822.
Ernst R.R., Bodenhusen G., and Wokaun A. 1987. Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, Oxford.
Freedman D.A., Wu L., and Levine A.J. 1999. Functions of the MDM2 oncoprotein. Cell. Mol. Life Sci. 55: 96–107.
Fry D.C., Emerson S.D., Palme S., Vu B.T., Liu C.M., and Podlaski F. 2004. NMR structure of a complex between Mdm2 and a small molecule inhibitor. J. Biomol. NMR 30: 163–173.
Gadek T.R., Burdick D.J., McDowell R.S., Stanley M.S., Marsters J.C., Jr., Paris K.J., Oare D.A., Reynolds M.E., Ladner C., Zioncheck K.A., et al. 2002. Generation of an LFA-1 antagonist by the transfer of the ICAM-1 immunoregulatory epitope to a small molecule. Science 295: 1086–1089.
Haupt Y., Maya R., Kazaz A., and Oren M. 1997. Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.
Hollstein M., Sidransky D., Vogelstein B., and Harris C.C. 1991. p53 mutations in human cancers. Science 253: 49–53.
Jones S. and Thornton J.M. 1996. Principles of protein–protein interactions. Proc. Natl. Acad. Sci. 93: 13–20.
Kallen J., Welzenbach K., Ramage P., Geyl D., Kriwacki R., Legge G., Cottens S., Weitz-Schmidt G., and Hommel U. 1999. Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. J. Mol. Biol. 292: 1–9.
Ku T.W., Ali F.E., Barton L.S., Bean J.W., Bondinell W.E., Burgess J.L., Callahan J.F., Calvo R.R., Chen L., Eggleston D.S., et al. 1993. Direct design of a potent non-peptide fibrinogen receptor antagonist based on the structure and conformation of a highly constrained cyclic RGD peptide. J. Am. Chem. Soc. 115: 8861–8862.
Kubbutat M.H., Jones S.N., and Vousden K.H. 1997. Regulation of p53 stability by Mdm2. Nature 387: 299–303.
Kussie, P.H., Gorina, S.,Marechal, V., Elenbaas, B., Moreau, J., Levine, A.J. and Pavletich, N.P. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274: 948–953.
Lane D.P. 1999. Exploiting the p53 pathway for cancer diagnosis and therapy. Br. J. Cancer (suppl. 1) 80: 1–5.
Last-Barney K., Davidson W., Cardozo M., Frye L.L., Grygon C.A., Hopkins J.L., Jeanfavre D.D., Pav S., Qian C., Stevenson J.M., Tong L., Zindell R., and Kelly T.A. 2001. Binding site elucidation of hydantoin-based antagonists of LFA-1 using multidisciplinary technologies: Evidence for the allosteric inhibition of a protein–protein interaction. J. Am. Chem. Soc. 123: 5643–5650.
Levine A.J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.
Lipinski C.A., Lombardo F., Dominy B.W., and Feeney P.J. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46: 3–26.
Liu G., Huth J.R., Olejniczak E.T., Mendoza R., DeVries P., Leitza S., Reilly E.B., Okasinski G.F., Fesik S.W., and von Geldern T.W. 2001. Novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties. J. Med. Chem. 44: 1202–1210.
Lunney E.A., Para K.S., Rubin J.R., Humblet C., Fergus J.H., Marks J.S. and Sawyer T.K. 1997. Structure-based design of a novel series of nonpeptide ligands that bind to the pp60src SH2 domain. J. Am. Chem. Soc. 119: 12471–12476.
McDowell R.S., Blackburn B.K., Gadek T.R., McGee L.R., Rawson T., Reynolds M.E., Robarge K.D., Somers T.C., Thorsett E.D., Tischler M., Webb R.R., and Venuti M.C. 1994. From peptide to non-peptide. 2. The de novo design of potent, non-peptidal inhibitors of platelet aggregation based on a benzodiazepinedione scaffold. J. Am. Chem. Soc. 116: 5077–5083.
McMillan K., Adler M., Auld D.S., Baldwin J.J., Blasko E., Browne L.J., Chelsky D., Davey D., Dolle R.E., Eagen K.A., et al. 2000. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry. Proc. Natl. Acad. Sci. 97: 1506–1511.
McPherson A. 1982. Preparation and analysis of protein crystals. Wiley, New York.
Michael D., and Oren M. 2003. The p53-Mdm2 module and the ubiquitin system. Semin. Cancer Biol. 13: 49–58.
Midgley C.A. and Lane D.P. 1997. p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15: 1179–1189.
Momand J., Jung D., Wilczynski S., and Niland J. 1998. The MDM2 gene amplification database. Nucleic Acids Res. 26: 3453–3459.
Oliner J.D., Kinzler K.W., Meltzer P.S., George D.L., and Vogelstein B. 1992. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80–83.
Oliner J.D., Pietenpol J.A., Thiagalingam S., Gyuris J., Kinzler K.W., and Vogelstein B. 1993. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362: 857–860.
Orner B.P., Ernst J.T., and Hamilton A.D. 2001. Toward proteomimetics: Terphenyl derivatives as structural and functional mimics of extended regions of an alpha-helix. J. Am. Chem. Soc. 123: 5382–5383.
Picksley S.M. and Lane D.P. 1993. The p53-mdm2 autoregulatory feedback loop: A paradigm for the regulation of growth control by p53? BioEssays 15: 689–690.
Picksley S.M., Vojtesek B., Sparks A., and Lane D.P. 1994. Immunochemical analysis of the interaction of p53 with MDM2—Fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9: 2523–2529.
Proudfoot J.R., Betageri R., Cardozo M., Gilmore T.A., Glynn S., Hickey E.R., Jakes S., Kabcenell A., Kirrane T.M., Tibolla A.K., et al. 2001. Nonpeptidic, monocharged, cell permeable ligands for the p56lck SH2 domain. J. Med. Chem. 44: 2421–2431.
Rutledge S.E., Chin J.W., and Schepartz A. 2002. A view to a kill: Ligands for Bcl-2 family proteins. Curr. Opin. Chem. Biol. 6: 479–485.
Smith A.B., III, Hirschmann R., Pasternak A., Yao W., Sprengeler P.A., Holloway M.K., Kuo L.C., Chen Z., Darke P.L., and Schleif W.A. 1997. An orally bioavailable pyrrolinone inhibitor of HIV-1 protease: Computational analysis and X-ray crystal structure of the enzyme complex. J. Med. Chem. 40: 2440–2444.
Stahl M., Taroni C., and Schneider G. 2000. Mapping of protein surface cavities and prediction of enzyme class by a self-organizing neural network. Protein Eng. 13: 83–88.
Stoll R., Renner C., Hansen S., Palme S., Klein C., Belling A., Zeslawski W., Kamionka M., Rehm T., Muhlhahn P., Schumacher R., Hesse F., Kaluza B., Voelter W., Engh R.A., and Holak T.A. 2001. Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 40: 336–344.
Tilley J.W., Chen L., Fry D.C., Emerson S.D., Powers G.D., Biondi D., Varnell T., Trilles R., Guthrie R., Mennona F., Kaplan G., LeMahieu R.A., Carson M., Han R.-J., Liu C.-M., Palermo R., and Ju G. 1997. Identification of a small molecule inhibitor of the IL2/IL2rα receptor interaction which binds to IL-2. J. Am. Chem. Soc. 119: 7589–7590.
Toogood P.L. 2002. Inhibition of protein–protein association by small molecules: Approaches and progress. J. Med. Chem. 45: 1543–1558.
Vassilev L.T., Vu B.T., Graves B., Carvajal D., Podlaski F., Filipovic Z., Kong N., Kammlott U., Lukacs C., Klein C., Fotouhi N., and Liu E.A. 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.
Vogelstein B., Lane D., and Levine A.J. 2000. Surfing the p53 network. Nature 408: 307–310.
Zhu Y.F., Wang X.C., Connors P., Wilcoxen K., Gao Y., Gross R., Strack N., Gross T., McCarthy J.R., Xie Q., Ling N., and Chen C. 2003. Quinoline-carboxylic acids are potent inhibitors that inhibit the binding of insulin-like growth factor (IGF) to IGF-binding proteins. Bioorg. Med. Chem. Lett. 13: 1931–1934.
<<< Chapter 45 References
|