Chapter 3: Identification of Protein–Protein Interactions by Conventional Column Chromatography—References
Abrieu A., Kahana J.A., Wood K.W., and Cleveland D.W. 2000. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102: 817–826.
Aristarkhov A., Eytan E., Moghe A., Admon A., Hershko A., and Ruderman J.V. 1996. E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proc. Natl. Acad. Sci. 93: 4294–4299.
Bharadwaj R. and Yu H. 2004. The spindle checkpoint, aneuploidy, and cancer. Oncogene 23: 2016–2027.
Chan G.K.T. and Yen T.J. 2003. The mitotic checkpoint: A signaling pathway that allows a single unattached kinetochore to inhibit mitotic exit. Prog. Cell Cycle Res. 5: 431–439.
Chan G.K.T., Jablonski S.A., Sudakin V., Hittle J.C., and Yen T.J. 1999. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J. Cell Biol. 146: 941–954.
Chen R.H., Shevchenko A., Mann M., and Murray A.W. 1998. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol. 143: 283–295.
Chen R.H., Waters J.C., Salmon E.D., and Murray A.W. 1996. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274: 242–246.
Dawson I.A., Roth S., and Artavanis-Tsakonas S. 1995. The Drosophila cell cycle gene fizzy is required for normal degradation of cyclins A and B during mitosis and has homology to the CDC20 gene of Saccharomyces cerevisiae. J. Cell Biol. 129: 725–737.
Evans T., Rosenthal E.T., Youngblom J., Distel D., and Hunt T. 1983. Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33: 389–396.
Fang G., Yu H., and Kirschner M.W. 1998. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12: 1871–1883.
Glotzer M., Murray A.W., and Kirschner M.W. 1991. Cyclin is degraded by the ubiquitin pathway. Nature 349: 132–138.
Gorbsky G.J., Chen R.H., and Murray A.W. 1998. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J. Cell Biol. 141: 1193–1205.
Hardwick K.G. and Murray A.W. 1995. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J. Cell Biol. 131: 709–720.
He X., Patterson T.E., and Sazer S. 1997. The Saccharomyces pombe spindle checkpoint protein Mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc. Natl. Acad. Sci. 94: 7965–7970.
Hershko A. and Ciechanover A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67: 425–479.
Hershko A., Heller H., Elias S., and Ciechanover A. 1983. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258: 8206–8214.
Hershko A., Ganoth D., Pehrson J., Palazzo R.E., and Cohen L.H. 1991. Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts. J. Biol. Chem. 266: 16376–16379.
Howell B.J., Hoffman D.B., Fang G., Murray A.W., and Salmon E.D. 2000. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J. Cell Biol. 150: 1233–1249.
Hoyt M.A., Totis L., and Roberts B.T. 1991. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66: 507–517.
Hwang L.H., Lau L.F., Smith D.L., Mistrot C.A., Hardwick K.G., Hwang E.S., Amon A., and Murray A.W. 1998. Budding yeast Cdc20: A target of the spindle checkpoint. Science 279: 1041–1044.
Kallio M., Weinstein J., Daum J.R., Burke D.J., and Gorbsky G.J. 1998. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J. Cell Biol. 141: 1393–1406.
Kim S.H., Lin D.P., Matsumoto S., Kitazono A., and Matsumoto T. 1998. Fission yeast Slp1: An effector of the Mad2-dependent spindle checkpoint. Science 279: 1045–1047.
King R.W., Deshaies R.J., Peters J.M., and Kirschner M.W. 1996. How proteolysis drives the cell cycle. Science 274: 1652–1659.
King R.W., Peters J.-M., Tugendreich S., Rolfe M., Hieter P., and Kirschner M.W. 1995. A 20S complex containing CDC27 and CDC16 catalyses the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81: 279–288.
Li R. and Murray A.W. 1991. Feedback control of mitosis in budding yeast. Cell 66: 519–531.
Li Y. and Benezra R. 1996. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274: 246–248.
Li Y., Gorbea C., Mahaffey D., Rechsteiner M., and Benezra R. 1997. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc. Natl. Acad. Sci. 94: 12431–12436.
Roberts B.T., Farr K.A., and Hoyt M.A. 1994. The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol. Cell. Biol. 14: 8282–8291.
Shah J.V. and Cleveland D.W. 2000. Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell 103: 997–1000.
Sudakin V., Chan G.K.T., and Yen T.J. 2001. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154: 925–936.
Sudakin V., Ganoth D., Dahan A., Heller H., Hershko J., Luca F.C., Ruderman J.V., and Hershko A. 1995. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6: 185–197.
Taylor S.S. and McKeon F. 1997. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89: 727–735.
Taylor S.S., Ha E., and McKeon F. 1998. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol. 142: 1–11.
Visintin R., Prinz S., and Amon A. 1997. CDC20 and CDH1: A family of substrate-specific activators of APC-dependent proteolysis. Science 278: 460–463.
Waters J.C., Chen R.H., Murray A.W., and Salmon E.D. 1998. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 141: 1181–1191.
Yao X., Abrieu A., Zheng Y., Sullivan K.F., and Cleveland D.W. 2000. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat. Cell Biol. 2: 484–491.
Yu H., Peters J.-M., King R.W., Page A.M., Hieter P., and Kirschner M.W. 1998. Identification of a cullin homology region in a subunit of the anaphase-promoting complex. Science 279: 1219–1222.
<<< Chapter 2 References
Chapter 4 References >>>
|