.
. Protein–Protein Interactions: A Molecular Cloning Manual, Second EditionCSHL Press .
. . . . .
.
.
.
. .
 
.
. . .
.  FIRST VISIT?
 TRY THESE LINKS
.
. . .
.
.   Enroll for Updates
  Privacy Policy
  Purchase the book
.
.
 
 
.
. . .
.  BOOK COVER .
. . .
.
. Protein–Protein Interactions: A Molecular Cloning Manual, Second Edition cover .
.
CLICK TO ENLARGE
 
Buy the Book
 
   
 

Chapter 4: Identification of Associated Proteins by Coimmunoprecipitation—References

Adams P.D., Seeholzer S., and Ohh M. 2002. Identification of associated proteins by coimmunoprecipitation. In Protein–protein interactions: A molecular cloning manual (ed. E. Golemis), pp. 59–74. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Aebersold R. and Mann M. 2003. Mass spectrometry-based proteomics. Nature 422: 198–207.

Aebersold R.H., Leavitt J., Saavedra R.A., Hood L.E., and Kent S.B. 1987. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc. Natl. Acad. Sci. 84: 6970–6974.

Beijersbergen R.L., Kerkhoven R.M., Zhu L., Carlee L., Voorhoeve P.M., and Bernards R. 1994. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo. Genes Dev. 8: 2680–2690.

Berggren K., Chernokalskaya E., Steinberg T.H., Kemper C., Lopez M.F., Diwu Z., Haugland R.P., and Patton W.F. 2000. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 21: 2509–2521.

Duan D.R., Pause A., Burgess W.H., Aso T., Chen D.Y., Garrett K.P., Conaway R.C., Conaway J.W., Linehan W.M., and Klausner R.D. 1995. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269: 1402–1406.

Ginsberg D., Vairo G., Chittenden T., Xiao Z.X., Xu G., Wydner K.L., DeCaprio J.A., Lawrence J.B., and Livingston D.M. 1994. E2F-4, a new member of the E2F transcription factor family interacts with p107. Genes Dev. 8: 2665–2679.

Hannon G.J. and Rossi J.J. 2004. Unlocking the potential of the human genome with RNA interference. Nature 431: 371–378.

Harlow E. and Lane D. 1988. Antibodies: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Harlow E., Whyte P., Franza B.R., and Schley C. 1986. Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol. Cell. Biol. 6: 1579–1589.

Hu Q.J., Bautista C., Edwards G.M., Defeo-Jones D., Jones R.E., and Harlow E. 1991. Antibodies specific for the human retinoblastoma protein identify a family of related polypeptides. Mol. Cell. Biol. 11: 5792–5799.

Ivan M., Kondo K., Yang H., Kim W., Valiando J., Ohh M., Salic A., Asara J.M., Lane W.S., and Kaelin W.G., Jr. 2001. HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 292: 464–468.

Iwai K., Yamanaka K., Kamura T., Minato N., Conaway R.C., Conaway J.W., Klausner R.D., and Pause A. 1999. Identification of the von Hippel-Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl. Acad. Sci. 96: 12436–12441.

Jaakkola P., Mole D.R., Tian Y.M., Wilson M.I., Gielbert J., Gaskell S.J., Kriegsheim A., Hebestreit H.F., Mukherji M., Schofield C.J., Maxwell P.H., Pugh C.W., and Ratcliffe P.J. 2001. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472.

Kamo M. and Tsugita A. 1999. N-terminal amino acid sequencing of 2-DE spots. Methods Mol. Biol. 112: 461–466.

Kamura T., Conrad M.N., Yan Q., Conaway R.C., and Conaway J.W. 1999a. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev. 13: 2928–2933.

Kamura T., Koepp D.M., Conrad M.N., Skowyra D., Moreland R.J., Iliopoulos O., Lane W.S., Kaelin W.G., Jr., Elledge S.J., Conaway R.C., Harper J.W., and Conaway J.W. 1999b. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284: 657–661.

Kibel A., Iliopoulos O., DeCaprio J.A., and Kaelin W.G., Jr. 1995. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269: 1444–1446.

Lane D.P. and Crawford L.V. 1979. T antigen is bound to a host protein in SV40-transformed cells. Nature 278: 261–263.

Lane W.S., Galat A., Harding M.W., and Schreiber S.L. 1991. Complete amino acid sequence of the FK506 and rapamycin binding protein, FKBP, isolated from calf thymus. J. Protein Chem. 10: 151–160.

Lisztwan J., Imbert G., Wirbelauer C., Gstaiger M., and Krek W. 1999. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 13: 1822–1833.

Lonergan K.M., Iliopoulos O., Ohh M., Kamura T., Conaway R.C., Conaway J.W., and Kaelin W.G., Jr. 1998. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell. Biol. 18: 732–741.

Marin M.C., Jost C.A., Irwin M.S., DeCaprio J.A., Caput D., and Kaelin W.G., Jr. 1998. Viral oncoproteins discriminate between p53 and the p53 homolog p73. Mol. Cell. Biol. 18: 6316–6324.

Matsudaira P., ed. 1993. A practical guide to protein and peptide purification for microsequencing. Academic Press, Harcourt Brace, New York.

Matsui N.M., Smith-Beckerman D.M., and Epstein L.B. 1999. Staining of preparative 2D gels. Methods Mol. Biol. 112: 571–588.

Maxwell P., Weisner M., Chang G.-W., Clifford S., Vaux E., Pugh C., Maher E., and Ratcliffe P. 1999. The von Hippel-Lindau gene product is necessary for oxgyen-dependent proteolysis of hypoxia-inducible factor a subunits. Nature 399: 271–275.

McMahon S.B., Van Buskirk H.A., Dugan K.A., Copeland T.D., and Cole M.D. 1998. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94: 363–374.

Ogawa H., Ishiguro K., Gaubatz S., Livingston D.M., and Nakatani Y. 2002. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296: 1132–1136.

Ohh M. and Kaelin W.G., Jr. 1999. The von Hippel-Lindau tumour suppressor protein: New perspectives. Mol. Med. Today 5: 257–263.

Ohh M., Park C.W., Ivan M., Hoffman M.A., Kim T.-Y., Huang L.E., Chau V., and Kaelin W.G., Jr. 2000. Ubiquitination of HIF requires direct binding to the von Hippel-Lindau protein beta domain. Nat. Cell Biol. 2: 423–427.

Ohh M., Yauch R.L., Lonergan K.M., Whaley J.M., Stemmer-Rachamimov A.O., Louis D.N., Gavin B.J., Kley N., Kaelin W.G., Jr., and Iliopoulos O. 1998. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol. Cell 1: 959–968.

Pause A., Lee S., Worrell R.A., Chen D.Y., Burgess W.H., Linehan W.M., and Klausner R.D. 1997. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl. Acad. Sci. 94: 2156–2161.

Reynolds A., Leake D., Boese Q., Scaringe S., Marshall W.S., and Khvorova A. 2004. Rational siRNA design for RNA interference. Nat. Biotechnol. 22: 326–330.

Rigaut G., Shevchenko A., Rutz B., Wilm M., Mann M., and Seraphin B. 1999. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17: 1030–1032.

Sambrook J. and Russell D.W. 2001. Molecular Cloning: A laboratory manual, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Shevchenko A., Wilm M., Vorm O., and Mann M. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68: 850–858.

Smejkal G.B., Robinson M.H., and Lazarev A. 2004. Comparison of fluorescent stains: Relative photostability and differential staining of proteins in two-dimensional gels. Electrophoresis 25: 2511–2519.

Tagami H., Ray-Gallet D., Almouzni G., and Nakatani Y. 2004. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116: 51–61.

Tyers M. and Willems A.R. 1999. One ring to rule a superfamily of E3 ubiquitin ligases. Science 284: 601, 603–604.

Vairo G., Livingston D.M., and Ginsberg D. 1995. Functional interaction between E2F-4 and p130: Evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev. 9: 869–881.

Xiong Y., Zhang H., and Beach D. 1992. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71: 505–514.

Xiong Y., Hannon G.J., Zhang H., Casso D., Kobayashi R., and Beach D. 1993. p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704.

Yates J.R. 3rd. 2004. Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct. 33: 297–316.

Yee S.P. and Branton P.E. 1985. Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology 147: 142–153.

Zhang R., Pousovoitov M.V., Ye X., Santos H., Chen W., Daganzo S.M., Erzberger J.P., Serebriiskii I., Canutescu A.A., Dunbrack R.L., Pehrson J. R., Berger J.M., Kaufman P. D., and Adams P.D. 2005. Formation of macroH2A-containing senescence associated heterochromatin foci (SAHF) and senescence driven by ASF1a and HIRA. Dev. Cell (in press).

<<< Chapter 3 References            Chapter 5 References >>>

 
 
 

 
   
. .