. Protein–Protein Interactions: A Molecular Cloning Manual, Second EditionCSHL Press .
. . . . .
. .
. . .
. . .
.   Enroll for Updates
  Privacy Policy
  Purchase the book
. . .
. . .
. Protein–Protein Interactions: A Molecular Cloning Manual, Second Edition cover .
Buy the Book

Chapter 31: Analysis of Protein Interactions with Immobilized Peptide Arrays Synthesized on Membrane Supports—References

Atassi M.Z. 1975. The antigenic structure of myoglobin: The complete immunochemical anatomy of a protein and conclusions relating to antigenic structures of proteins. Immunochemistry 12: 423–438.

Bialek K., Swistowski A., and Frank R. 2003. Epitope-targeted proteome analysis: Towards a large-scale automated protein-protein-interaction mapping utilizing synthetic peptide arrays. Anal. Bioanal. Chem. 376: 1006–1013.

Billich C., Sauder C., Frank R., Herzog S., Bechter K., Takahashi K., Peters H., Staeheli P., and Schwemmle M. 2002. High-avidity human serum antibodies recognizing linear epitopes of Borna disease virus proteins. Biol. Psychiatry 51: 979–987.

Blüthner M., Mahler M., Müller D.B., Dünzl H., and Bautz F.A. 2000. Identification of an α-helical epitope region on the PM/Scl-100 autoantigen with structural homology to a region on the heterochromatin p25β autoantigen using immobilized overlapping synthetic peptides. J. Mol. Med. 78: 47–54.

Chan W.C., and White P.D. 2000. Fmoc solid phase peptide synthesis: A practical approach. Oxford University Press, Oxford, United Kingdom.

Dooley C.T. and Houghten R.A. 1993. The use of positional scanning synthetic peptide combinatorial libraries for the rapid determination of opioid receptor ligands. Life Sci. 52: 1509–1517.

Dostmann W.R.G., Taylor M.S., Nickl C.K., Brayden J.E., Frank R., and Tegge W.J. 2000. Highly specific, membrane-translocating cGMP-dependent protein kinase Iα inhibitors from peptide libraries inhibit NO-induced cerebral dilation. Proc. Natl. Acad. Sci. 97: 14772–14777.

Fields G.B. and Noble R.L. 1990. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 35: 161–214.

Frank R. 1992. SPOT synthesis: An easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48: 9217–9232.

Frank R. 1994. Spot-synthesis: An easy and flexible tool to study molecular recognition. In Innovations and perspectives in solid phase synthesis (ed. R. Epton), pp. 509–512. Mayflower Worldwide, Birmingham, United Kingdom.

Frank R. 2002a. High-density synthetic peptide microarrays: Emerging tools for functional genomics and proteomics. Comb. Chem. High Throughput Screen. 5: 429–440.

Frank R. 2002b. The SPOT-synthesis technique: Synthetic peptide arrays on membrane supports—Principles and applications. J. Immunol. Methods 267: 13–26.

Frank R. and Schneider-Mergener J. 2002. SPOT-synthesis—Scope of applications. In Peptide arrays on membrane supports: A laboratory manual (ed. J. Koch and M. Mahler), pp. 1–24. Springer-Verlag, Berlin.

Frank R., Kiess M., Lahmann H., Behn C., and Gausepohl H. 1995. Combinatorial synthesis on membrane supports by the SPOT technique. In Peptides 1994: Proceedings of the 23rd European Peptide Symposium, September, Braga, Portugal (ed. H.L.S. Maia), pp. 479–480. ESCOM, Leiden, The Netherlands.

Geysen H.M. and Mason T.J. 1993. Screening chemically synthesized peptide libraries for biologically-relevant molecules. Bioorg. Med. Chem Lett. 3: 397–404.

Geysen H.M., Rodda S.J., and Mason T.J. 1986. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol. Immunol. 23: 709–715.

Harlow E. and Lane D. 1988. Antibodies: A laboratory manual, pp. 319–358. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Klos A., Ihrig V., Messner M., Grabbe J., and Bitter-Suermann D. 1988. Detection of native human complement components C3 and C5 and their primary activation peptides C3a and C5a (anaphylatoxic peptides) by ELISAs with monoclonal antibodies. J. Immunol. Methods 111: 241–252.

Kneissel S., Queitsch I., Petersen G., Behrsing O., Micheel B., and Dübel S. 1999. Epitope structures recognized by antibodies against the major coat protein (g8p) of filamentous bacteriophage fd (Inoviridae). J. Mol. Biol. 288: 21–28.

Kramer A., Volkmer-Engert R., Malin R., Reineke U., and Schneider-Mergener J. 1993. Simultaneous synthesis of peptide libraries on single resin and continuous cellulose membrane supports: Examples for the identification of protein, metal and DNA binding peptide mixtures. Pept. Res. 6: 314–319.

Kramer A., Reineke U., Dong L., Hoffmann B., Hoffmüller U., Winkler D., Volkmer-Engert R., and Schneider-Mergener J. 1999. Spot synthesis: Observations and optimizations. J. Pept. Res. 54: 319–327.

Krchnák V., Vágner J., Safár P., and Lebl M. 1988. Noninvasive continuous monitoring of solid-phase peptide synthesis by acid-base indicator. Collect. Czech. Chem. Commun. 53: 2542.

Mahler M., Mierau R., and Blüthner M. 2000. Fine specificity of the anti-CENP-A B-cell autoimmune response. J. Mol. Med. 78: 460–467.

Mukhija S., Germeroth L., Schneider-Mergener J., and Erni B. 1998. Identification of peptides inhibiting enzyme I of the bacterial phosphotransferase system using combinatorial cellulose-bound peptide libraries. Eur. J. Biochem. 254: 433–438.

Niebuhr K., Ebel F., Frank R., Reinhard M., Domann E., Carl U.D., Walter U., Gertler F.B., Wehland J., and Chakraborty T. 1997. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J. 17: 5433–5444.

Oggero M., Frank R., Etcheverrigaray M., and Kratje R. 2004. Defining the antigenic structure of human GM-CSF and its implication to receptor interaction and therapeutic treatments. Mol. Divers. 8: 257–269.

Rodriguez M., Li S.S.-C., Harper J.W., and Songyang Z. 2004. An oriented peptide array library (OPAL) strategy to study protein-protein interactions. J. Biol. Chem. 279: 8802–8807.

Rüdiger S., Schneider-Mergener J., and Bukau B. 2001. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J. 20: 1042–1050.

Schmidt T.G.M., Koepke J., Frank R., and Skerra A. 1996. Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J. Mol. Biol. 255: 753–766.

Schultz J., Hoffmüller U., Ashurst J., Krause G., Schmieder P.J., Macias M., Schneider-Mergener J., and Oschkinat H. 1998. Specific interactions between the synthrophin PDZ domain and voltage-gated sodium channels. Nat. Struct. Biol. 5: 19–24.

Töpert F., Pires R., Landgraf C., Oschkinat H., and Schneider-Mergener J. 2001. Synthesis of an array comprising 837 variants of the hYAP WW protein domain. Angew. Chem. Int. Ed. Engl. 40: 897.

Töpert F., Knaute T., Guffler S., Pires J.R., Matzdorf T., Oschkinat H., and Schneider-Mergener J. 2003. Combining SPOT synthesis and native peptide ligation to create large arrays of WW protein domains. Angew. Chem. Int. Ed. Engl. 42: 1136–1140.

Valle M., Kremer L., Martínez C., Roncal F., Valpuesta J.M., Albar J.P., and Carrascosa J.L. 1999. Domain architecture of the bacteriophage Φ29 connector protein. J. Mol. Biol. 288: 899–909.

Zander N. 2004. New planar substrates for the in situ synthesis of peptide arrays. Mol. Divers. 8: 189–195.

<<< Chapter 30 References            Chapter 32 References >>>


. .